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EXECUTIVE SUMMARY

The inaccurate estimates that sometimes result from the use of cost estimating

relationships (CERs) come from two sources: (1) inaccuracy of the inputs and (2)

inaccuracy of the relationships themselves. The work presented here concentrates on the

second of these problems.

Two basic approaches to estimating software development costs were tzken, one in

which only a single input was used (the single-input case) and one in which multiple inputs

were used (the multiple-input case). For the single-input case, we used a simple CER with

only size (lines of code) as the input. For the multiple-input case, we used a commercially

available cost estimating model that required qualitative inputs as well as size input.

The intent of the single-input case was to show that when a variety of software

types (space, avionics, ground) are involved, as in the case of the Phase One Strategic

Defense System (SDS), using only one CER yields less accurate estimate. than does using

several CERs. Our approach was to segregate historical data on software size (measured in

lines of code) according to platform and function and derive a CER for each segregated

database. Our conclusions for the single-input case were as follows:

" More accurate results can be obtained if the data are segregated by software
application. Segregation captures the effect on cost of factors that are difficult
to quantify.

* The development of space-based software costs six times more than that of
ground-based software, given size.

" Software developed for avionic functions (command, control, and
communication (C3), radar, and integration software residing in air, on sea, or
on ground) costs two to four times more than ground-based software that
functions in support of space activities. The cost range depends on the size of
the software.

The intent of the multiple-input case was to show that predictive ability could be

enhanced by adding more information. Using the Constructive Cost Model

v



I

(COCOMO), we derived two different methods for recalibrating the model. Our I
conclusions for the multiple-input case were as follows:

• More accurate estimates can result from adding more information to the I
estimating relationship.

* All factors to be used in the estimating process should be used when deriving 3
the estimating relationship.

* A cost estimating model calibrated to a specific environment yields more
accurate estimates for that environment than one calibrated to a general I
environment.

The methods for estimating cost presented in this paper could improve the I
understanding and accuracy of software cost estimates for systems such as the Phase One

SDS. The methods should be updated as more data on software of all types become 3
available.
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I. INTRODUCTION

Over the last 30 years, the use of software in the Department of Defense's weapon

systems has grown tremendously. This growth has been not only in the size of the

software programs used but also in the functions the software perform. Software in early

weapon systems was used mainly for monitoring the condition of the hardware. Such a

software program's size was less than 10 thousand lines of code (LOC). More recently,

weapon system software has been used in the actual operation and control of the system,

including such functions as signal processing, fire control, and command and control (C2).

Software size for these systems can be greater than 1 million LOC. Similar growth has

been seen in the support software used for developing and maintaining the weapon system

software. This tremendous growth in software size and function has made it difficult to

accurately estimate the cost of developing software for a weapon system.

A number of methods have been devised for estimating software development

costs.1 These methods range from simple cost estimating relationships (CERs) to complex

models. Despite the number of methods available, obtaining accurate estimates of software

development costs remains a difficult task. The inaccuracy of the estimates resulting from

these methods come from two sources: (1) inaccuracy of the input used and (2) inaccuracy

of the estimating relationship employed. The work in this paper addresses the second

source of inaccuracy.

The problem is not with the methods themselves, but with the way in which they

are implemented. In order to use complex models, large amounts of information are

needed, not only information about the software being estimated, but also about the model

itself. Even the best cost model can give distorted estimates if it is used incorrectly.

A. OBJECTIVE

The objective of this work was to improve existing methods for estimating software

costs. Our work concentrated on ways of implementing these methods. Both a simple

CER and a complex model were examined.

1 For a descriptive evaluation of software cost estimating tools, see Reference [1].
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B. APPROACH

In order to come up with better ways to estimate cost, we examined the accuracy of

estimates obtained from two sets of circumstances: the single-input case, in which a simple

CER using the single input of size was used to estimate cost, and the multiple-input case, in

which more information was added and a commercially available cost model called the

Constructive Cost Model (COCOMO) [2] was used.

For the single-input case, we examined the data used to derive the CER to

determine how to segregate the data so that the effect of non-size cost factors could be

reduced. For the multiple-input case, we looked for ways to include factors other than size

into the estimating relationship.

C. CONCLUSIONS

Two general conclusions can be drawn from our work:

* When using a single-input CER, predictive ability can be improved by
segregating the data used to derive the CER into more homogeneous data sets.

* When using a commercially available cost model, predictive ability can be
improved by recalibrating the model to a particular environment.

The sections that follow explain how we came to these conclusions.

2



II. BACKGROUND

The software for a complex system such as the Phase One SDS involves a wide

variety of functions carried on several different platforms. The functions include signal

processing, target discrimination, target tracking, fire control/weapons assignment,

survivability, communications, operating systems, data gathering, command and control

(C2), and support functions. The software will be carried on space-, missile-, and ground-

based platforms. Estimating the cost of such a complex system is a difficult task.

From the literature and from our discussions with organizations involved with

software development and cost estimation, we can see that factors that influence cost are
many. In the context of software cost estimation, cost factors come from three general

environments:

• Software environment

- Software size measured in source lines of code (SLOC) or function points

- Software language

- Software applications (function and platform)

* Development environment

- Software engineering (tool availability, computer access, simulation
capabilities, and configuration management, quality control, and
requirements traceability)

- Modem programmirg practices

- Personnel (programmer and analyst) experience and capabilities

- Requirements volatility

" Operating environment

- Hardware architecture (types of processors, input/output requirements,
and the number of devices in the network)

- Time and memory constraints

- Performance characteristics (the number and speed of targets to be
tracked, reaction time, and the amount of data to be processed).

3



The factors that tend to influence cost the most are software size, software

application and hardware architecture (i.e., the system's complexity), personnel experience

and capabilities, and reqirements volatility. One problem with incorporating these or other

cost factors into CERs is that they are difficult to quantify so that they can be consistently

applied.
2

To illustrate the problem of consistent application, we use size as an example.
Although size is the most widely accepted factor used in software CERs, how to measure it

is subject to much debate. Should size be measured in lines of code (LOC), or should a
measure of functionality, such as function points, be used? 3 Both measures need to be

defined in a consistent manner to allow accurate interpretation of the measure as well as
comparison across projects. Questions often arise about what constitutes a line of code,

how LOC should be counted, and how to compare LOC for different languages. For
example, should cai-riage returns, semi-colons, statements, comments, blank lines, and
data declarations be included? The function point measure exhibits similar definitional

problems.

For qualitative factors involving a rating, such as personnel capability, the

consistency problem is even more apparent. If a rating system is used, the reliability of the

measure is only as good as the judgment of those determining the rating. We have no way

of knowing how the ratings compare across projects and contractors. Does the average

capability of one contractor's personnel match that of another, having a similar impact on
productivity and cost? Rating variables are often incorporated as multiplicative variables in

an equation. In this form, the relative effects on cost are determined by expert opinion and

limited statistical analysis. With these types of input, the question of how the judgment of
the person doing the rating compares to expert opinion comes into play.

Another problem with incorporating cost factors into CERS has to do with I
availability of information. Estimates being made during the early development stages of a

program are difficult simply because the information needed to make the estimates is not yet 3
available. For example, software size is not known at the time of requirements definition.

Oftc, the only way to estimate LOC is either by expert opinion or by analogy to an 5
I

2 For a discussion of previous attempts to develop software CERs, see References [1] through [71.
3 For a more detailed discussion of function points and their use for real-time embedded software see 3

References [61 and [7].

4 1I
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I historical database. The detailed design information needed for function point estimates is

not available at the time that such estimates are required.

I Lack of knowledge similarly affects requirements volatility, the amount of major

changes to requirements that occur over the life of a program. Because the number of3 requirements changes cannot be known until the program is complete, requirements

volatility is a poor factor on which to base an estimate.

3 The dual problems of consistent quantification and lack of information have to do

with the accuracy of the input to CERs. Once known, the inputs are used to estimate cost,5 but the problems do not end there. This paper addresses the problem of the inaccuracy of

the methods used.

3 In general, CERs for software relate cost as a function of size. The relationship

between size and cost is expressed in exponential form. Multiplicative factors can be5 introduced to capture the effects of factors other than size. The basic cost estimating

relationship takes on the following form:

1 Cost = a(Size)b J7Fi'

where 11 is the product of n multiplicatively introduced factors F. If the multiplicative

factors are not included in the relationship, their influence on cost are only captured

implicitly in the estimates of the parameters a and b.

In order to incorporate factors other than size into our software estimates, we
segregated the data used to estimate parameters a and b so that the data would be as
homogeneous as possible. Then we incorporated a set of factors representing additional

cost drivers (as defined by the COCOMO cost estimating model) when estimating the
parameters a and b. The data used to conduct this work is discussed in the next section.

35I



III. DATA

The data used for our analysis came from the Jet Propulsion Laboratory (JPL)

(provided by NASA) and from a report on military tactical aircraft development costs
(MTADC) [8] (provided by the Air Force Electronic Systems Division (ESD), MITRE

Corporation, and contractors). The JPL/NASA data were for software used in various

satellite programs, including the Space Shuttle. Both ground- and space-based platforms

were included. The MTADC data were on software whose functions included command,

control, and communication (C3), radar, and avionics integration on air-, sea-, and ground-

based platforms. The data in both databases included information on size and cost

Software size was measured as total equivalent source lines of code, including data

declarations, job-control language, and "include files," but excluding comments, prefaces,

file-boundary statements, commercial off-the-shelf software, and non-delivered support

and test software. In addition, software size was adjusted for whether the code was reused

or adapted.

Software cost was measured in man-months of effort. This measure included

management, design, programming, testing, and database administration. It did not

include software installation. The duration of software development was measured from

completion of the system design review to completion of the functional qualification test,

which takes place before system integration.

Limiting factors in our analysis were the lack of historical data and the lack of

knowledge about the data that were available. Although 101 observations were collected,

knowledge of individual data points was limited. For some data, only the platform of the

software was known with certainty, and the functions were known only at a general level.

For other data, we only knew in general terms what functions and platforms were

I involved. For the JPLJNASA data we were able to accurately distinguish between ground-

and space-based data, but because software functions were not completely identified,

further segregation on that basis was not possible. Similarly, for the MTADC data, neither

function nor platform were known with enough confidence to segregate within the

i database.

17



Despite these limitations, some segregation was done with significant implications.
The JPL/NASA data involved space-oriented software. That is, either the software was
located in space or was ground-based software that supported a space mission. The type of
functions involved were operational and system, but could not be distinguished given the
limited knowledge of the data. Using these data, we were able to test for the difference

between software located in space and software located on the ground.

The MTADC database involved air-, sea-, and ground-based software, but they
were not distinguished. We knew that the functions involved were radar, C3 , and avionics
integration activities. With these data, we tested for the difference between what we call

avionic (embedded real-time) functions and space functions.

The data were thus segregated into three separate databases: JPL/NASA space data,

JPL/NASA ground data, and MTADC avionics data. An analysis was performed to
determine, first, if the three segregated databases were significantly different from each
other, and if so, if three separate equations would produce better results than one. Second,
we incorporated other, non-size cost factors into the basic equation by recalibrating the

COCOMO model. This work is described in the next section.

8



IV. ANALYSESI
In this section, we address two hypotheses concerning the accuracy of relationships

used to estimate software development cost. The first hypothesis, addressed by the single-

input case, is that a relationship based on data tailored to a specific environment yields more

accurate estimates for that environment than a relationship based on a general environment.

The implication is that when estimating cost for a software project consisting of various
combinations of functions and platforms, more than one equation should be used.

IThe second hypothesis, addressed by the multiple-input case, is that when adding

factors to the estimating relationship for predictive purposes, the factors should be included
in the analysis to derive the estimating relationship. Building on the first hypothesis, the

implication is that when constructing a relationship based on data tailored to an environment

j with additional, non-size factors included, the basic relationship between size and cost

should be re-derived using those non-size factors.

I A. SINGLE-INPUT CASE

The single-input method used the cost factors of size and application (function and

platform) to estimate cost. That is, we segregated the database according to the application
of the software and then estimated cost as a function of size. The purpose of segregating

the database was to reduce the variance caused by non-size factors that influence cost. The

application of the software may be correlated with the non-size factors that are difficult to

quantify. As an example, software projects that operate in space are all subject to similar

hardware architecture constraints. By deriving a CER for space-based software only, we

eliminate the need to quantify the effect of hardware architecture on cost.

1. Size and Application

To ensure consistency of the size measure across projects in the analysis, size was

measured as total equivalent source lines of code (LOC). In addition, software size was

adjusted for whether the code was reused or adapted.

9
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The application of software refers to both the platform and function of the software. I
Classes of software functions include operational, system, and support, as follows:

• Operational: performs prime mission, e.g., target tracking, command andn
control, and fire control

" System: infrastructure to other functions, e.g., operating system, security, 5
communications, and fault tolerance

• Support: off-line software, e.g., simulation/training, maintenance/site support,
and report generators. I

We concentrated first on examining the available data to determine possible methods

of segregation. The analysis was performed to demonstrate that for the different

applications, the relationship between size and cost is significantly different. I
We expected a difference in productivity, as measured in lines of code per man-

month (LOC/MM) or hours per lines of code (HOURS/LOC), both between the various

platforms and between the various functions. Examining the platforms first, we expected i
ground- and sea-based software to exhibit the highest productivity, air-based software the

next highest, and space-based software the lowest. 3
The non-size factors that influence cost that tend to be similar by platform are

hardware environment factors and quality-control factors. The hardware environment 3
factors include the architecture (processors, communication busses, etc.) and time and

memory constraints. The more complex the architecture, the more difficult and less

productive the software development. Similarly, the more time and memory constraints,

the more difficult and less productive the software development. We expected architecture

complexity and time and memory constraints to be greater in space than in air. Similarly,

they should be greater in the air than on ground or sea, where they should be about the

same. This led us to the conclusion that space-based software exhibits less productivity I
then air-based software, which exhibits less productivity than ground- or sea-based

software. I
The quality-control factors to be considered are configuration management, testing

requirements, and documentation (or traceability) requirements. Generally, the easier it is 3
to service the software once operational, the more lax are the quality-control efforts.
Simply put, the access to space-based software is difficult at best; therefore, space-based 3
software should experience greater configuration management and testing requirements

during development then air-based software. Similarly, air-based software should have 3

10 1
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greater requirements then ground- or sea-based software, which should be about the same.
The greater requirements should lower productivity; that is, more effort per LOC is

expected, thus lowering the number of LOC/MM.

In terms of the various functions and their relationship to productivity, the main

factor involved is processing complexity. Processing complexity is basically the difficulty

level of the algorithms and logic involved, including the mathematical applications. Simply

put, system code is expected to be the most complex, followed first by operational code

and then by support code.

Our approach assumed that non-size factors that affect cost tend to be similar for a

given software application, so the variance caused by these factors are reduced significantly

by segregating the software according to application. Our effort attempted to demonstrate

that the data can be segregated, improving predictive ability, and to reveal the relative
differences between applications. Segregating the data avoids the problem of quantifying

the variables that are difficult to measure consistently.

There are, of course, other factors that influence cost that apply across application

types. We acknowledge that segregating by application does not capture these effects, and
that the problem of quantifying these measures still exists.

2. Modeling

The CERs we derived estimate cost as a function of size. The relationship between
size and cost is an exponential function of the basic form, cost = a(size) b. The coefficients

I were estimated using a logarithmic transformation of the basic form, yielding the following:

In(cost) = ln(a) + b[ln(size)]. (1)

I A Chow test4 was performed to verify that a pair-wise combination of sets of data

within a larger group of data sets should be segregated. For data sets h and g with m and n

degrees of freedom, respectively, and k parameters to be estimated, the Chow test for

segregating data involved five basic steps:

1. Use Equation (1) to estimate cost using data sets h and g separately.

2. Use Equation (1) to estimate cost using the combined data sets h and g.

41 For a more detailed discussion of the Chow test, the reader is referred to Reference [9].

* 11



3. Perform the following calculation 3
F- (RSSh+g - RSSh - RSSg)/(K + 1)

(RSSh + RSSg)/(M + N - 2(K + 1)) !

where RSS is residuals squared sum.

4. State the null hypothesis: data sets h and g should be pooled.

5. If the F value calculated in step 3 is greater then the critical value of F (CV)
with (K + 1, M + N - 2(K + 1)) degrees of freedom, then reject the null I
hypothesis.

If the result of the Chow test is to reject the null hypothesis, then the two data sets 3
should not be pooled. The implication of that Chow test result is that individual equations

estimated for the segregated databases would be more accurate predictors then one equation-3

for the combined database.

To further demonstrate the improved predictive ability from segregating the data, 3
the predicted values were compared with the actual values. That is, the size values were

input to the resulting equations with the estimated effort compared to the actual effort. The 3
equations were compared on the basis of how often the predicted value fell within 20

percent of the actuals.

Finally, an attempt was made to demonstrate the relative differences between the

various applications. This was done by inputting a range of sample size values (10

thousand to 1000 thousand LOC). The predicted cost outputs (in MM) were compared

after transforming them into productivity measures (in HOURS/LOC). The comparison

was made for a given size and for increasing size. 3
B. MULTIPLE-INPUT CASE 3
1. Adding Cost Factors

The multiple-input approach attempted to explicitly incorporate additional cost

factors into the equation. That is, we estimated the coefficients a and b with non-size cost

factors in the estimating equation such that a and b no longer implicitly include their effects. I
The solution to the problem of measuring the factors was to use subjective variables as

defined in the Constructive Cost Model (COCOMO) developed by Boehm [2]. These1

variables, known as Effort Adjustment Factors (EAFs), consist of fifteen factors divided

into four groups-product, project, development, and computer attributes-which

121



correspond to the three classes of cost factors previously discussed. Although not

complete, they provide adequate representation and are available. The EAFs are discrete

variables in that they involve a rating scheme (e.g., very low, low, nominal, high, very

high) and each rating has a discrete numerical value. The EAFs are presented in Table 1.

Table 1. Software Development Effort Multipliers

Ratings

Very Very Extra
Cost Drivers Low Low Nominal High Hig High

Product Attributes

RELY (Required Software Reliability) .75 .88 1.00 1.15 1.40

DATA (Data Base Size) .94 1.00 1.08 1.16

CPLX (Product Complexity) .70 .85 1.00 1.15 1.30 1.65

Computer Attributes

TIME (Execution Time Constraint) 1.00 1.11 1.20 1.66

STOR (Main Storage Constraint 1.00 1.06 1.21 1.56

VIRT (Virtual Machine Volatility)a .87 1.00 1.15 1.30

TURN (Computer Tunaround Time) .87 1.00 1.07 1.15

Personnel Attributes

ACAP (Analyst Capability) 1.46 1.19 1.00 .86 .71

AEXP (Applications Experience) 1.29 1.13 1.00 .91 .82

PCAP (Programmer Capability) 1.42 1.17 1.00 .86 .70

VEXP (Virtual Machine Experience)a 1.21 1.10 1.00 .90

LEXP (Programming Language 1.14 1.07 1.00 .95
Experience)

Project Attributes

MODP (Use of Modern Programming 1.24 1.10 1.00 .91 .82
Practices)

TOOL (Use of Software Tools) 1.24 1.10 1.00 .91 .83

SCED (Required Development Schedule 1.23 1.08 1.00 1.04 1.10
Source: Reference [21, p. 118.
a For a given software product, the underlying virtual machine is the complex of hardware and software (OS,

DBMS, etc.) it calls on to accomplish its tasks.

COCOMO comes in three versions, basic, intermediate, and detailed. The

difference among the three versions is the degree of information input into the model. Each
version of the model has three modes: embcdded, semi-detached, and organic. The

13



differences among the modes is the type of application of the project, as reflected in U
different values for a and b. We used the embedded mode of the intermediate version of

the model. 3
The algorithm of the intermediate model is of the basic form already described.

That is, cost is first estimated as an exponential function of size and then adjusted by the i
EAFs. The form of the equation is:

COST = a(SIZE)b 11 EAF.
i~l

Boehm used data from TRW to derive values for a and b. These values were i

derived taking the EAFs into account explicitly by adjusting cost by the product of the

EAFs. The discrete numerical values for the individual EAFs were derived heuristically !

using expert opinion at TRW.

Because the equation is a representation of the software development process at i
TRW, it should be recalibrated to the environment where the model is used. The

approaches described are different methods for recalibrating COCOMO. 3
The most commonly recalibrated parameters are a and b. There are two methods

for deriving new values for a and b: (1) without the EAFs and (2) with the EAFs. The

first method is the single-input approach described in the previous subsection. The second

method is the multiple-input approach described here.

Two concerns arise when recalibrating with subjective variables like the EAFs.

These concerns are: (1) the accuracy and consistency with which the EAFs are assessed for 3
the given projects and (2) the validity of the numerical assignment given to the specific

ratings for each EAF. For the most part, we are dependent upon the organizations that

develop the software project and put together the database to maintain accuracy and

consistency in assessing ratings. Ideally, one person who is intimately knowledgeable

about all the projects within a database should maintain consistency and objectivity in

assessing the ratings.

The numerical values for the EAFs should be derived statistically and for a i
particular environment. Attempts have been made at this but the process proves difficult to

obtain good results. 5 Briefly, this has involved incorporating, for each EAF, a dummy 1
5 For examples, the reader is referred to [10] and [11]. S
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variable for each rating but one (say, nominal, assuming it equals one) on the right-hand

side of the equation. This would potentially involve over 50 independent variables in the

regression. Unfortunately, this would both create a cumbersome equation and require a

large number of observations.

In the single-input approach we demonstrated the desirability of segregating the

data. Building on this, the multiple-input approach recalibrates COCOMO using the

segregated data. We attempted to show that the EAFs can be used to derive new values for

a and b, r-, sulting in a more accurate prediction of cost.

2. Modeling

The multiple-input approach uses two different methods to incorporate the EAFs

into the model. One method involves incorporating them as a single product, the other as

four individual products, one for each of the four groups-product, project, development,

and computer.

By incorporating the EAFs explicitly into the estimating equation, the coefficients in
the basic equation a and b no longer implicitly reflect the effects of the EAFs on cost. The

result from incorporating the EAFs should be that the difference in the coefficients a and b

in the separate equations is reduced. That is, we would expect a and b to take on more

similar values when incorporating the non-size factors into the equation.

The model for the first method is of the exponential form as follows:
b 15

COST = a(SIZE)b * I"[ EAFi
i- I

The equation is first transformed as follows:

15b

COST/fl EAF = a(SIZE)
i-I

The parameters (a and b) are then estimated using a logarithmic transformation, yielding the

following:

In COST/I- EAFi) = In (a) + b (In (SIZE))

For this method the data was again segregated.

15
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The model for the second method was also of the exponential form: U
COST= a(SIZE)b* FI l * I* n" 4

where

nI = RELY * DATA * CPLX

n2 = TIME * STOR* VIRT * TURN

113 = ACAP * PCAP *AEXP * LEXP * VEXP

1I4 = MODP * TOOL * SCED. 3
The coefficients to be estimated were a, b, c1, c2 , c Y and c4. The coefficients c1, c2 , C 3,

and c4 were used to relate the impact of the individual EAFs on cost more directly. 3
To estimate all the coefficients, a logarithmic transformation was used, yielding the

following: 3
In (COST) = In (a) + b [ln(SIZE)] + c1 [ln(711)] + c2 [In (-I2)] + c3 [In(f 3 )] + c4 [ln(n 4)].

For this method, we again attempted to segregate the data when estimating the coefficients.

Finally, we demonstrated which method produces the best predictive equation by 3
determining how often the predicted falls within 20 percent of the actual. The methods just

described were also compared to Boehm's original equation and the single-input equations.

I



V. RESULTS

A. SINGLE-INPUT CASE

Table 2 presents the regression results for the combined data and the individual data

sets. The results are reported after transforming the estimated logarithimic equation back to

a multiplicative form. The transformations introduce a bias in the constant term. We

adjusted for this bias by adding one-half of the regression mean square error to the constant

term of the logarithmic equation. This adjustment is an approximate correction for the bias

introduced by the logarithmic estimation method.

Table 2. Regression Results for the Single-Input Case

Cost Estimating
Data Relationship N R2  Adj. R2  SEE

Combined MMc = 9.36 (KLOC) 1.00  101 .75 .74 .78
(9.44) (17.04)

JPL/NASA Ground MM0 = 4.18 (KLOC) 1.05  69 .92 .92 .40
(9.3) (28.7)

MTADC Avionics MMA = 5.8 (KLOC)1.2 1  18 .81 .80 .67
(2.79) (8.45)

JPLNASA Space MMs = 30.72 (KLOC) 1.009  14 .90 .89 .55
(9.6) (10.5)

Note: The numbers in parenthesis are the t-statistics for the regression coefficients.

Figure 1 presents the three individual equations in graphical form. Note that for

only the MTADC avionics data does the exponent take on a value similar to previous efforts

(see References [2] through [41). The exponent value is greater then one, suggesting

diseconomies of scale. For the JPL/NASA data, the exponents take on a value of

approximately one.

The question of whether the differences between coefficients in the combined

equations and in the individual equations was examined in two ways, statistically through a

Chow test and graphically through a display of predictive accuracy. The Chow test

17



determines if the differences are statistically significant and, if so, that the data should be I
segregated. The graphic presentations demonstrate the predictive differences.

Avionics I
Space

0 0" &, Ground I
0

0o0

A

w A
0 A

Size (in Thousands of Lines of Code)

Figure 1. Effort Versus Size by Platform for the Single-Input CaseJ

Table 3 presents the results of the Chow test. Since the calculated F valve (F) is
greater then the critical valve of F (CV), the Chow test supports the expectation that the
individual databases are significantly different. The conclusions from these tests are that

the data should be segregated and individual CERs derived./

Table 3. Chow Test and Mean Squared Error Test Results 3
Chow Test Applications F CV (0.1 level)Ii

JPL/NASA Ground

Versus Space 96.1 3. 1
Versus MTADC Avionics 20.0 3.1

JPL/NASA Space
Versus MTADC Avionics 11.2 3.3 31

I!



Figure 2 presents the results of determining the frequency with which the predicted
fall within 20 percent of the actuals. The implication of these results is that an equation
,lerived from a segregated data set is more accurate than an equation derived from a more

general data set.

0.5

I3 0.4

.00

+1 0.3

'0
ID

0.1"00.

0')

a 0.1

0.0 ---!--M

Ground Avionics Space

3 Combined 0 Segregated

Figure 2. Comparison of Estimating Equations by Database
for the Single-Input Case

Table 4 presents the results of using a range of sample input to generate sample

output for the various equations. The results are transformed into an HOUR/LOC measure
(this assumes a 152-hour man-month).

I The conclusions drawn are that space-based software is approximately six times as
expensive to develop as ground-based software, given size. For the MTADC avionics

data, the conclusion is that, depending on the size of the input, avionics software can be

from two to four times as expensive to develop as ground-based space application

software. What is interesting to note, again, is that only for the avionics software does

productivity vary significantly with the size of the project.

1
I 1
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Table 4. Comparison of Productivity I

Size Input
(Thousands of Lines of Code)

Software
Applications 10 50 100 500 1,000 3
Space 4.8 4.8 4.9 4.9 5.0

(6.9) (6.2) (6.1) (5.6) (5.5)
Avionics 1.4 2.0 2.3 3.3 3.8

(2.0) (2.5) (2.9) (3.8) (4.2)
Ground 0.7 0.8 0.8 0.9 .9 1
Note: The numbers in parentheses are the ratios of the applications to the ground-based data,
used as a base case.

B. MULTIPLE-INPUT CASE

1. EAFs as a Single Product I
Table 5 presents the regression results for incorporating the EAFs as a single

product. Three equations, one for each segregated data set, are shown. Figure 3 presents
the results in graphical form. As can be seen from both the regression results and the

graph, the estimated parameters are more similar when the EAFs are included than when

they are not (see the previous subsection).

Table 5. Regression Results for the Multiple-Input Case I
Cost Estimating

Platform Relationship N R2  Adj. R2  SEE
Ground MM = 4.08 (KLOC) 1-09  69 .96 .96 .30

(12.43) (39.43)

Avionics MM = 5.85 (KLOC) 1.1  16 .75 .73 .76
(2.3) (6.45) 5

Space MM = 8.23 (KLOC) 1.08  14 .94 .94 .44
(7.4) (14.1)

Note: The numbers in parenthesis are the t-statistics for the regression coefficients. U
Again, a Chow test was performed to verify that, with the EAFs included, the data 3

should be segregated. Although not reported here, the results of the Chow test supported

segregating the data. No unambiguous pooling of the data could be performed. The fact 5

20 1
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that the data can be segregated with the EAFs included implies that factors other than the

EAFs vary by platform.

Space Avionics

Ground

ILU

I w 4

U.*

Size (Thousands of Lines of Code)

Figure 3. Effort Versus Size by Platform for the Multiple-Input Case

Figure 4 presents the results of determining the frequency that the predicted is

within 20 percent of the actuals. Table 6 presents the estimating methods compared in the
figure. The Boehm equation is from the uncalibrated intermediate COCOMO model. The

implication from these results is that, except for the avionics, adding the EAFs improves
the predictive ability (single input vs. multiple input). For all three databases, if the EAFs

are used for prediction, there is improvement when the EAFs are used to estimate the

parameters a and b (single input plus vs. multiple input). For all three databases, predictive

ability is improved when the model is recalibrated (multiple input vs. unrecalibrated).

Table 7 presents the mean values for the product of the EAFs by database. For

both single-input methods, the parameters a and b were derived without the EAJ-s. Only ii-

the case of the ground data did predictive ability improve when using the EAFs to predict.

For both the space and avionics data, the predictive ability decreased. The difference is due

to the value of the EAFs. When the product of the EAFs is not significantly different from

one, no loss of predictive ability occurs. Only when the product of the EAFs differ3 significantly from one is there a loss in predictive ability.
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Figure 4. Comparison of Estimating Methods by Database
for the Multiple-Input Case

Table 6. Comparison of Estimating Methods

Method name Parameters Estimation Method Prediction Method

Single Input MM = a(KLOC)b MM = a(KLOC)b

15

Single Input Plus MM = a(KLOC)b MM = a(KLOC)b 17 EAFi

i=1
b 15

Multiple Input 15 - a(KLOC)b MM = a(KLOC)b 1 EAF

1 EAF i  i=1

15

Unrecalibrated Not Applicablea MM = 2.8(KLOC) "2 17 EAF'
i;1

a Taken from Reference [2].
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Table 7. Mean Values for the Product of the EAFs

* 15
Database Mean rl EAF

Ground .921

Avionics 1.77

Space 3.05

2. EAFs as the Product of Four Groups

Our data were insufficient to completely test the case where the EAFs are included

I individually as products of the four groups. Results were obtained when the space and
ground data were pooled and a dummy variable used to differentiate between the two

classes of data. The dummy variable DSPACE was used to differentiate between space and

ground data, where DSPACE has a value of one if the project is space based, a value of
zero otherwise. 6 The regression results are:

MM= (3.96 * 2.38(DSPACE)(KLOC1 "07 * 1"05 7 72 77

MM=(3.96*1 2.38 )(KOC *f r ,
(11.82) (5.13) (35.83) (4.58) (4.43) (4.43) (2.4)

N = 83 Adj. R2 = .962 SEE = .1

When the predicted values were compared to the actual values, no improvement

was found relative to including the EAFs as a single product. Although no results are
reported here, this method shows promise. When more data become available, further

work along these lines is warranted.

I C. CONCLUSIONS

The conclusions to be drawn from the single-input analysis are listed below:

The effect on cost of factors that are difficult to quantify can be captured by
segregating the data according to software application, resulting in more
accurate predictive ability.

Software developed for space is six times more expensive than software
developed for ground application, given size.

6 This is not consistent with running individual regressions reported earlier.
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Software developed for avionic-type applications (C3, radar, and integration
software residing in air, on sea, or on ground) is two to four times as
expensive as software developed to support space activities residing on the
ground. The range depends on the size of the project.

The conclusions to be drawn from the multiple-input analysis are listed below:

* Adding more information to the estimating relationship can improve the

predictive ability.

* If additional factors are to be used in the estimating process, they should be I
used to generate the estimating relationship.

* A recalibrated cost estimating model for a specific environment will predict 3
more accurately than a cost estimating model calibrated to a more general
environment.

The single-input analysis suggests the need for more homogeneous data in the

derivation of a cost estimating relationship. The multiple-input analysis, suggests that

inclusion of more information in the derivation of the relationship and then in estimating

can further improve the predictive ability.

II
I
I
I
I
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VI. EXAMPLE APPLICATION

In this section, we present an example of how the different equations presented in
this paper are used. The example shows both the single-input case and the multiple-input

case. The steps taken to generate a development cost estimate are: (1) identify the types of
software involved, (2) identify the source lines of code and effort adjustment factor (EAF)
ratings for each type of software, (3) choose the correct equation for each type of software,
and (4) perform the appropriate calculations to generate estimates.

The system being estimated is a fictitious reconnaissance satellite system designated
R-1. The software used in R-l exists both in space and on the ground. The functions

located in space include signal and data processing for an infrared sensor, communications
and system software, and software associated with flying and maintaining the satellite in
space. The functions located on the ground include command and control, duplication of
the signal and data processing done in space, communication, monitoring and testing of the
software and hardware in space, and data gathering, report generating, and similar off-line

functions.

The first step to generating an estimate is to identify the types of software in order
to place them in categories for cost estimating purposes. For the R-l example, three types
of categories of software are identified. All software operating in space is placed in one

category known as space software. The real-time embedded functions on the ground that
are similar to command and control and radar applications are placed in the category known
as avionics. Even though these functions do not exist in air, they are similar to avionic-

type functions. The monitoring and test software and the off-line software are placed in the

category known as ground software.

The second step is to identify the source lines of code (LOC) and EAF ratings for

each type of software. The R-1 satellite system has a total of 1 million LOC with 250
thousand LOC as space, 300 thousand as avionics, and 450 thousand as ground. Table 8
presents the EAFs by type for R- I, along with the size figures. Two sets of EAFs for each

type of software are presented. Set 1 represents EAFs that are similar to the data used to

generate the estimating relationships. Set 2 represents EAFs that differ from the data used

to generate the estimating relationships.
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The third step is to choose the correct equation for each type of software. In our I
example the software was divided into three categories that matched the equations derived

in Section IV. That is, we used the space equation for the space software, the avionics

equation for the avionics software, and the ground equation for the ground software.

Table 8. Program Characteristics for the R-1 Satellite System

Software Category

Ground Avionics Space

Characteristic Set I Set 2 Set 1 Set 2 Set I Set 2 1
Size (thousands of LOC) 450 450 300 300 250 250

EAFs

RELY High Very High High Very High Very High High

DATA Nominal Very High High High Nominal Nominal

CPLX High Very High Very High Extremely Very High Extremely 3
High High

TIME Nominal Nominal Very High Very High Very High Very High

STOR Nominal Nominal Very High Very High Extremely Extremely
High High

VIRT Low Nominal Low High Nominal High

TURN Nominal Nominal Nominal Nominal Nominal Nominal

ACAP High Nominal High Nominal High Nominal 3
AEXP High Nominal High Nominal High Nominal

PCAP Nominal Nominal Nominal Nominal Nominal Nominal

VEXP Low Low Low Low Low LowI

LEXP Nominal Nominal Nominal Nominal Nominal Nominal

MODP High Nominal High Nominal High Nominal 3
TOOL Nominal Nominal Nominal Nominal Nominal Nominal

SCED Nominal Nominal Nondnal Nominal Nominal Nominal 3
The fourth step is the actual execution of the equations with the appropriate inputs.

Two assumptions were made in order to generate cost estimates. One was that the software

can be partitioned into tLnits of 100 thousand LOC; therefore, 100 thousand LOC is the

input to the equation with wne result multiplied by the actual size divided by 100 thousand 3
LOC. As an example, for the 250 thousand LOC of space software, 100 thousand LOC is

input to the equation and the result is multiplied by 2.5. Since the equations yield results in 3
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man-months (MM), a conversion is made to dollars by assuming a rate of $12,500/MM,

which is equivalent to an annual rate of $150,000.

Table 9 presents the results for the single-input case, and Table 10 shows them for

the multiple-input case.

Table 9. Equations and Results for the Single-Input Case

Software Man-Months of Cost in Millions

Category Equation Effort of Dollars

Ground 4.18 (KLOC) 1.05  2,368 $30

Avionics 5.8 (KLOC) 1.2 1  4,577 $57

Space 30.72 (KLOC)1. 009  8,005 $100

Total 14,950 $187

Table 10. Equations and Results for the Multiple-Input Case

15

Software I EAF Man-Months of Cost in Millions
Category Equation i=1 Effort of Dollars

Set 1: 0.97 Set 1: 2,696 Set 1: $34Ground 1

4.08 (KLOC) 1.09 H EAFi Set 2: 2.32 Set 2: 6,453 Set 2: $81
i=l

Set 1: 1.73 Set 1: 4,815 Set 1: $60
Avionics 15

5.85 (KLOC) 1.1 H EAFi Set 2: 4.58 Set 2: 12,746 Set 2: $159
i=l

Set 1: 2.89 Set 1: 8,595 Set 1: $107
Space 15

8.23 (KLOC) 1.08 H EAFi Set 2: 5.91 Set 2: 17,570 Set 2: $220
i--1

Total Set 1: 16,102 Set !: $201

Set 2: 36,769 Set 2: $460
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An important question to ask when estimating software development cost is which U
set of equations to use, the single-input or the multiple-input case. Using the EAFs in the

multiple-input case requires more information then the single-input case. Will this

information necessarily improve the accuracy of the estimate?

In the example application two sets of EAFs for each type of software are provided. I
Set 1 approximates the mean of our data, and Set 2 differs from the mean but is still within

the range of our data. Examining Set 1 first, we see that the cost estimate for the multiple-

input case differs from the single-input case by approximately 7%, not a significant

difference. Therefore, the EAFs did not add significantly to the estimating process. In Set

2, we see that the cost estimate for the multiple-input case differs from the single-input case

by about 145%, a significant difference. In this instance the EAFs do add significantly to

the estimating process. The EAFs can thus be used to fine-tune an estimate when software
being estimated is different from the data used to derive the estimating relationship.

An additional concern is the confidence the user has in the assessment of the EAFs. I
Early in the life cycle of a project, the EAFs may not be known with confidence.

Inaccurately assessed EAFs can affect the accuracy of the estimate. Similarly, inconsistent I
assessment of EAF values across components of a project can distort estimating ability.

I
I
I
I
I
I
I
I
I
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VII. SUMMARY AND CONCLUSIONS

This paper details two separate attempts to improve the accuracy of the relationships

used in estimating software development cost. The single-input analysis is representative

of using a simple CER with only one input (size). The multiple-input analysis is

representative of using a commercially available model, namely COCOMO.

The intent of the single-input analysis was to show that one CER was less accurate

than several CERs considering the variety of software involved in systems such as the

Phase One SDS. The basic approach was to segregate historical data according to platform

and application, derive a CER for each segregated database, and then show the individual

CERs to be more accurate than a combined CER.

The conclusions from th's effort were:

• The effect tha- actors that are difficult to quantify have on cost can be captured

by segrcge .aig the data according to software application, resulting in more
accur ,,e predictive ability.

Software developed for space is six times more expensive than software

developed for ground application, given size.

Software developed for avionic-type applications (C3 , radar, and integration
software residing in air, on sea, or on ground) is two to four times as

expensive as software developed to support space activities residing on the
ground. The range depends on the size of the project (number of LOC).

The intent of the multiple-input analysis was to show that predictive ability could be

increased by adding information. The result of this effort was to provide a method for

recalibrating COCOMO. Two different methods were derived for recalibrating COCOMO,

then several methods were compared to determine how best to improve predictive ability.

The conclusions for this effort were:

* Adding more information to the estimating relationship can improve the

predictive ability.

• If additional factors are to be used in the estimating process, those same factors

should be used when generating the estimating relationship.
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A recalibrated cost estimating model for a specific environment will predict
more accurately than a cost estimating model calibrated to a more general
environment.

To summarize, methods were developed for estimating cost in this effort. If

adopted, these methods could improve the understanding and accuracy of the software cost

estimates for Phase One SDS. The cost estimating methods should be continually updated

as new data becomes available.
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ABBREVIATIONS

C2  command and control

C3  command, control, and communications

CER cost estimating relationship

COCOMO Constructive Cost Model

EAF Effort Adjustment Factor

ESD Electronic Systems Division

JPL Jet Propulsion Laboratory

KLOC thousands of lines of code

LOC lines of code

MM man-months

MTADC military tactical aircraft development costs

NASA National Aeronautics and Space Administration

POET Phase One Engineering Team

SDIO Strategic Defense Initiative Organization

SDS Strategic Defense System
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